Aug. 29, 2011
News

Spatial Light Interference Microscopy: Sheding Light on Cell Growth

  • Illinois researchers developed a novel imaging technique that can quantitatively measure cell mass with light. (Photo by Quantitative Light Imaging Laboratory)Illinois researchers developed a novel imaging technique that can quantitatively measure cell mass with light. (Photo by Quantitative Light Imaging Laboratory)

Led by electrical and computer engineering professor Gabriel Popescu , the research team developed a new imaging method called spatial light interference microscopy (SLIM) that can measure cell mass using two beams of light. Described in the Proceedings of the National Academy of Science, the SLIM technique offers new insight into the much-debated problem of whether cells grow at a constant rate or exponentially.

SLIM is extremely sensitive, quantitatively measuring mass with femtogram accuracy. By comparison, a micron-sized droplet of water weighs 1,000 femtograms. It can measure the growth of a single cell, and even mass transport within the cell. Yet, the technique is broadly applicable.

"A significant advantage over existing methods is that we can measure all types of cells - bacteria, mammalian cells, adherent cells, nonadherent cells, single cells and populations," said Mustafa Mir, a graduate student and a first author of the paper. "And all this while maintaining the sensitivity and the quantitative information that we get."

Unlike most other cell-imaging techniques, SLIM - a combination of phase-contrast microscopy and holography - does not need staining or any other special preparation. Because it is completely non-invasive, the researchers can study cells as they go about their natural functions. It uses white light and can be combined with more traditional microscopy techniques, such as fluorescence, to monitor cells as they grow.

"We were able to combine more traditional methods with our method because this is just an add-on module to a commercial microscope," Mir said. "Biologists can use all their old tricks and just add our module on top."

Because of SLIM's sensitivity, the researchers could monitor cells' growth through different phases of the cell cycle. They found that mammalian cells show clear exponential growth only during the G2 phase of the cell cycle, after the DNA replicates and before the cell divides. This information has great implications not only for basic biology, but also for diagnostics, drug development and tissue engineering.

The researchers hope to apply their new knowledge of cell growth to different disease models.

For example, they plan to use SLIM to see how growth varies between normal cells and cancer cells, and the effects of treatments on the growth rate.

Original publication:
Mustafa Mir, Zhuo Wang, Zhen Shen, Michael Bednarz, Rashid Bashir, Ido Golding, Supriya G. Prasanth, Gabriel Popescu: Optical measurement of cycle-dependent cell growth, PNAS August 9, 2011 vol. 108 no. 32 13124-13129, Free via Open Access

http://news.illinois.edu

You may also be interested in

Register now!

The latest information directly via newsletter.

To prevent automated spam submissions leave this field empty.