Discrete Molecular Imaging: From Super-to Ultra Resolution Microscopy

  • New method pushes the frontier in imaging resolution and distinguishes individual features in single moleculesNew method pushes the frontier in imaging resolution and distinguishes individual features in single molecules
  • New method pushes the frontier in imaging resolution and distinguishes individual features in single molecules
  • Andor iXon and Zyla cameras helps drive microscopy from super to ultra-resolution

Andor Technology has reported that their iXon and Zyla cameras helps drive microscopy from super to ultra-resolution. Scientists at Harvard University’s Wyss Institute for Biologically Inspired Engineering have demonstrated an optical resolution of less than five nanometres (<5 nm) by using a new method called Discrete Molecular Imaging (DMI). The technology pushes the frontier in imaging resolution and distinguishes individual features in single molecules.

Reporting in Nature Nanotechnology, Professor Peng Yin and his team detail DMI, an integrated set of new imaging methods that builds upon their DNA nanotechnology-powered super-resolution microscopy platform, DNA-PAINT. Because DMI can robustly image each individual molecular feature in a crowded molecular environment, it provides the capability for studying molecular conformations and heterogeneities in single multi-component complexes. It also complements current structural biology methods like X-ray crystallography and cryo-electron microscopy, and provides an easy, fast and multiplexed method for the structural analysis of many samples in parallel.

Statement of Peng Yin, Professor at Wyss Institute
“Proteins do not usually work in isolation but in larger complexes that enable cells to communicate with each other, move cargo around in their interiors, and replicate their DNA. Our ability to observe and track each individual protein within these machines is crucial to our ultimate understanding of these processes.  The ultra-high resolution of DMI advances the DNA-PAINT platform one step further towards the vision of providing the ultimate view of biology.”

Statement of Mingjie Dai, Researcher at Wyss Institute
“We used both the Andor Zyla 4.2 and iXon Ultra 897 cameras for our high-resolution imaging work, choosing them for their very high quantum efficiency and high performance in general.

In particular, given the demanding image analysis conditions under which we were working, the photon response non-uniformity of the iXon camera was measured to be as low as 0.3 %, allowing super-high precision single-molecule localisation in our experiments.”

The DNA-PAINT technologies are based on the transient binding of two complementary short DNA strands, one being attached to the molecular target that the researchers aim to visualize and the other attached to a fluorescent dye. Repeated cycles of binding and unbinding create a precisely defined blinking behaviour at the target site. The blinking is highly programmable by the choice of DNA strands and has now been further exploited by the team's current work to achieve ultra-high resolution imaging.

Statement of Marcin Barszczewski, Andor
“By further harnessing key aspects underlying the blinking conditions in their DNA-PAINT-based technologies and developing a novel method that compensates for tiny but extremely disruptive movements of the microscope stage that carries the samples, the Harvard team managed to boost optical resolution microscopy far beyond that achieved anywhere else.”

To learn more about the iXon series of scientific cameras, please visit us online www or contact us via email here.

Reference
Mingjie Dai, Ralf Jungmann, Peng Yin. “Optical imaging of individual biomolecules in densely packed clusters” Nature Nanotechnology, 2016; DOI: 10.1038/nnano.2016.95

Contact

Andor Technolgy PLC
7 Millennium Way
BT12 7AL Belfast
Great Britain
Phone: +44 28 9023 7126
Telefax: +44 28 9031 0792

Register now!

The latest information directly via newsletter.

To prevent automated spam submissions leave this field empty.