You are here: Home

AFM

JPK Announces the Opening of US Offices
Dec. 08, 2014

JPK Announces the Opening of US Offices

JPK Instruments, a manufacturer of nanoanalytic instrumentation for research in life sciences and soft matter, announces the opening of their US offices in Southern California on 1st January, 2015. Heading up this new organization is Dr. Stefan Kaemmer who has been appointed General Manager of US Operations.
more
Scanning Tunnelling Microscopy: Computer Simulations Sharpen Insights Into Molecules
Dec. 02, 2014

Scanning Tunnelling Microscopy: Computer Simulations Sharpen Insights Into Molecules

The resolution of scanning tunnelling microscopes can be improved dramatically by attaching small molecules or atoms to their tip. The resulting images were the first to show the geometric structure of molecules and have generated a lot of interest among scientists over the last few years. Scientists from Forschungszentrum Jülich and the Academy of Sciences of the Czech Republic in Prague have now used computer simulations to gain deeper insights into the physics of these new imaging techniques. One of these techniques was presented in the journal Science by American scientists this spring. The results have now been published in the journal Physical Review Letters. more
Sep. 15, 2014

JPK Expands Availability of Instrumentation in the USA

JPK Instruments, a manufacturer of nanoanalytic instrumentation for research in life sciences and soft matter, announces their expansion into the US market with new distributors and the availability of the NanoWizard AFM.
more
Sep. 02, 2014

TSOM: Optical Microscope Technique Confirmed as Valid 3D Nano-Measurement Tool

TSOM, a technique developed several years ago at the National Institute of Standards and Technology (NIST), can enable optical microscopes to measure the three-dimensional (3-D) shape of objects at nanometer-scale resolution-far below the normal resolution limit for optical microscopy (about 250 nanometers for green light). The results could make the technique a useful quality control tool in the manufacture of nanoscale devices such as next-generation microchips.
more
Lasers Makes Atomic Force Microscopes Way Cooler
Aug. 25, 2014

Lasers Makes Atomic Force Microscopes Way Cooler

Laser physicists have found a way to make atomic-force microscope probes 20 times more sensitive and capable of detecting forces as small as the weight of an individual virus. The technique, developed by researchers at The Australian National University (ANU), hinges on using laser beams to cool a nanowire probe to minus 265 degrees Celsius. more
AFM and XPS Study of Aminosilanes on Si
Aug. 14, 2014

AFM and XPS Study of Aminosilanes on Si

In this study APTMS and APREMS aminosilanes were used for the modification of silicon, with a purpose for using them in sensor´s applications (detection of explosives like TNT, DNT, RDX, etc.). The morphology and surface chemistry of the modified surfaces were investigated using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Our results show that the polymerization of aminosilanes and consequently the thickness of the aminosilane layer depend on the number of possible bonding sites of the aminosilane molecule. more
Imaging Polarization Charges Using Charge Gradient Microscopy
Jul. 24, 2014

Imaging Polarization Charges Using Charge Gradient Microscopy

Polarization charges in ferroelectric materials are screened by equal amounts of surface charges with opposite polarity under ambient conditions. Researchers from the Center for Nanoscale Materials, Argonne's Nanoscience & Technology and Materials Science divisions, and Tohoku University have shown that scraping, collecting, and quantifying surface screen charges reveals the underlying polarization domain structure at high speed, a technique dubbed charge gradient microscopy (CGM).
more
Microscopic Study of Nanostructured AlOx
Jul. 17, 2014

Microscopic Study of Nanostructured AlOx

Large area ordered nanopatterning of RF sputtered AlOx layers have been carried out. The technique involves UV laser treating of the film through LB films of silica nanospheres. The hexagonal, close packed arrangement of these spheres was projected to the surface due to the laser treatment resulting in ordered structure of pits of ~200 nm diameter and 1.3 nm depths. The samples were characterized by means of AFM and XTEM. Experimental results are in good agreement with the simulations.
more
Coupled Ge Quantum Dot Crystals
Jun. 16, 2014

Coupled Ge Quantum Dot Crystals

Coupled three-dimensional Ge quantum dot crystals (QDCs) are realized by multilayer growth of quantum dots (QDs) on patterned Si (001) substrates. With increasing the vertical periodic number of the QDCs, the photoluminescence (PL) spectral linewidth decreased exponentially, and so did the peak energy blueshift caused by increasing excitation power, which are attributed to the electronic coupling and thus the formation of miniband. more
WITec Suite Software:  High-Speed Data Acquisition and Processing of Large Data Volumes for Raman, AFM, and SNOM
Jun. 10, 2014

WITec Suite Software: High-Speed Data Acquisition and Processing of Large Data Volumes for Raman, ...

The WITec Suite software is specifically developed to acquire and process large data volumes of large-area, high-resolution measurements and 3D imaging while providing speed, performance, and usability.
Through the software architecture and graphical user interface an integrated and consolidated functionality is available incorporating the various techniques and measurement modes from Raman, to AFM, to SNOM, fluorescence and luminescence. more
RSS Newsletter