You are here: Home

Atomic Force Microscope

Traumatic Brain Injury
Mar. 19, 2014

Traumatic Brain Injury

Even the mildest form of a traumatic brain injury, better known as a concussion, can deal permanent, irreparable damage. Now, an interdisciplinary team of researchers at the University of Pennsylvania is using mathematical modeling to better understand the mechanisms at play in this kind of injury, with an eye toward protecting the brain from its long-term consequences. more
Pulling Polymers with a Tip of an Atomic Force Microscope
Mar. 10, 2014

Pulling Polymers with a Tip of an Atomic Force Microscope

In collaboration with colleagues from Berlin and Madrid, researchers at the Department of Physics at the University of Basel have pulled up isolated molecular chains from a gold surface, using the tip of an atomic force microscope (AFM). The observed signal provides insight into the detachment force and binding energy of molecules. The results have been published in the journal PNAS.
more
Asylum Research Releases GetReal Automated AFM Probe Calibration System
Jan. 20, 2014

Asylum Research Releases GetReal Automated AFM Probe Calibration System

The GetReal Automated Probe Calibration feature from Asylum Research enables the user with just one click to fully calibrate the atomic force microscope (AFM) probe sensitivity and spring constant, enabling more consistent, more accurate results.

It also protects the probe from damage that often occurs with conventional calibration methods.
The feature is included at no extra charge exclusively with Asylum Research MFP-3D and Cypher family AFMs. more
Microscopic Fountain Pen: Adding New Functionality to an AFM Microscope
Jan. 16, 2014

Microscopic Fountain Pen: Adding New Functionality to an AFM Microscope

The Atomic Force Microscope (AFM), which uses a fine-tipped probe to scan surfaces at the atomic scale, will soon be augmented with a chemical sensor. This involves the use of a hollow AFM cantilever, through which a liquid - in this case mercury - is passed under pressure. The droplet of mercury at the tip acts as a sensor. This microscopic fountain pen was developed by researchers at the University of Twente's MESA+ Institute for Nanotechnology. Details of the "fountain pen's" mechanism of action were recently published in Analytical Chemistry.
more
Developing an Advanced Three-Dimensional Atomic Force Microscope
Jan. 02, 2014

Developing an Advanced Three-Dimensional Atomic Force Microscope

Membrane proteins are the "gatekeepers" that allow information and molecules to pass into and out of a cell. Until recently, the microscopic study of these complex proteins has been restricted due to limitations of "atomic force microscopes" that are available to researchers and the one-dimensional results these microscopes reveal. Now, researchers at the University of Missouri have developed a three-dimensional microscope that will yield unparalleled study of membrane proteins and how they interact on the cellular level. These microscopes could help pharmaceutical companies bring drugs to market faster.
more
Nanoscale Friction: High Energy Losses in the Vicinity of Charge Density Waves
Dec. 19, 2013

Nanoscale Friction: High Energy Losses in the Vicinity of Charge Density Waves

In collaboration with the University of Basel, an international team of researchers has observed a strong energy loss caused by frictional effects in the vicinity of charge density waves. The researchers vibrated the nanometer-sized tip of an atomic force microscope above the surface of a layered structure of niobium and selenium atoms. This may have practical significance in the control of nanoscale friction. The results have been published in the scientific journal Nature Materials.
more
Dec. 16, 2013

University of Guelph: New Atomic Force Microscope for Studying Complex Biological Systems

A new state-of-the-art atomic force microscope is expected to help University of Guelph researchers find ways to fight bacterial infections and discover unique biological materials for a variety of uses. Prof. John Dutcher, Department of Physics, will use a $ 163,143 grant from the Canada Foundation for Innovation to purchase the new microscope.
more
Using White-light Interferometric Microscope to Detect Damage of Optical Components
Dec. 10, 2013

Using White-light Interferometric Microscope to Detect Damage of Optical Components

These images might resemble a planetary surface but actually show a different kind of alien environment: a microscopic view across a damaged laser lens, down to the nanometre level - a millionth of a millimetre, smaller than most individual bacteria. The European Space Agency's (ESA) optics laboratory uses a powerful technique, white-light interferometric microscopy, to zoom in on tiny areas, mapping each one in a few seconds.
more
Building a Low-cost Atomic Force Microscope with Lego
Sep. 21, 2013

Building a Low-cost Atomic Force Microscope with Lego

The world's first low cost Atomic Force Microscope (AFM) has been developed in Beijing by a group of PhD students from University College London (UCL), Tsinghua University and Peking University - using Lego. In the first event of its kind, Lego2Nano brought together students, experienced makers and scientists to take on the challenge of building a cheap and effective AFM, a device able to probe objects only a millionth of a millimeter in size - far smaller than anything an optical microscope can observe.
more
Building a New Hydrothermal Atomic Force Microscope for Studying Basic Geochemical Problems
Jul. 06, 2013

Building a New Hydrothermal Atomic Force Microscope for Studying Basic Geochemical Problems

A high-power atomic force microscope that could revolutionize the study of materials at high temperatures and pressures is coming into focus in a Wright State University lab. Steven Higgins and his team are building a new version of the hydrothermal atomic force microscope, an instrument that could unlock scientific mysteries and be used in the study of oil production, hydrofracturing of rock layers, storage of radioactive waste and the capture and storage of atmospheric carbon dioxide. more
RSS Newsletter