You are here: Home

Atomic force microscopy

There is No Other AFM Like a Cypher
Jan. 19, 2015

There is No Other AFM Like a Cypher

Asylum Research Cypher AFMs are in a class of their own. Our scientists and engineers optimized every design choice for the highest resolution, fastest scanning, best environmental control, and exceptional productivity. Cypher routinely achieves higher resolution than other AFMs and is the only fast scanning AFM that supports a full range of modes and accessories. Cypher ES enables hassle-free environmental control - temperature, liquid perfusion, and chemical compatibility. more
AFM Applications in Polymer Science and Engineering
Jan. 19, 2015

AFM Applications in Polymer Science and Engineering

The atomic force microscope (AFM) is a powerful tool for characterizing polymer materials. AFMs can contribute much more information about polymers besides simple topographic morphology, including probing molecular-level forces; mapping mechanical, thermal, and electrical properties; and assessing solvent and thermal effects in near real time. more
Improving Calibration of Atomic Force Microscopes
Dec. 23, 2014

Improving Calibration of Atomic Force Microscopes

Spotting molecule-sized features-common in computer circuits and nanoscale devices-may become both easier and more accurate with a sensor developed at the National Institute of Standards and Technology (NIST). With their new design, NIST scientists may have found a way to sidestep some of the problems in calibrating atomic force microscopes (AFMs).
more
Atomic Force Microscopy: Carving out Nanoscale Designs on Ionic Polymer
Dec. 22, 2014

Atomic Force Microscopy: Carving out Nanoscale Designs on Ionic Polymer

Scientists at the Department of Energy's Oak Ridge National Laboratory have used advanced microscopy to carve out nanoscale designs on the surface of a new class of ionic polymer materials for the first time. The study provides new evidence that atomic force microscopy, or AFM, could be used to precisely fabricate materials needed for increasingly smaller devices.
more
Collagen Surface Functionalization
Dec. 22, 2014

Collagen Surface Functionalization

We tested several sample preparation methods for collagen surfaces, suitable for Single Molecule Force Spectroscopy (SMFS). When collagen was adhered to silicon surfaces or bound via the short EGS-linker, it showed a high adhesive behavior and was therefore not apt for SMFS experiments. In contrast, with a sample preparation procedure using substrates with a dense layer of poly-(ethylene glycol) chains and terminal benzaldehyde functions, unspecific adhesion between tip and sample was low.
more
Scanning Tunnelling Microscopy: Computer Simulations Sharpen Insights Into Molecules
Dec. 02, 2014

Scanning Tunnelling Microscopy: Computer Simulations Sharpen Insights Into Molecules

The resolution of scanning tunnelling microscopes can be improved dramatically by attaching small molecules or atoms to their tip. The resulting images were the first to show the geometric structure of molecules and have generated a lot of interest among scientists over the last few years. Scientists from Forschungszentrum Jülich and the Academy of Sciences of the Czech Republic in Prague have now used computer simulations to gain deeper insights into the physics of these new imaging techniques. One of these techniques was presented in the journal Science by American scientists this spring. The results have now been published in the journal Physical Review Letters. more
Oxford Instruments Asylum Research Receives the 2014 Microscopy Today Innovation Award for blueDrive Photothermal Excitation
Sep. 16, 2014

Oxford Instruments Asylum Research Receives the 2014 Microscopy Today Innovation Award for ...

Oxford Instruments Asylum Research has received the 2014 Microscopy Today Innovation Award for the development of blueDrive Photothermal Excitation. blueDrive, an option available exclusively for Asylum's Cypher Atomic Force Microscopes (AFMs), makes tapping mode imaging remarkably simple, incredibly stable, and strikingly accurate. It replaces the conventional piezoacoustic excitation mechanism of the AFM cantilever by using a blue laser to directly excite the cantilever photothermally. more
Lasers Makes Atomic Force Microscopes Way Cooler
Aug. 25, 2014

Lasers Makes Atomic Force Microscopes Way Cooler

Laser physicists have found a way to make atomic-force microscope probes 20 times more sensitive and capable of detecting forces as small as the weight of an individual virus. The technique, developed by researchers at The Australian National University (ANU), hinges on using laser beams to cool a nanowire probe to minus 265 degrees Celsius. more
AFM and XPS Study of Aminosilanes on Si
Aug. 14, 2014

AFM and XPS Study of Aminosilanes on Si

In this study APTMS and APREMS aminosilanes were used for the modification of silicon, with a purpose for using them in sensor´s applications (detection of explosives like TNT, DNT, RDX, etc.). The morphology and surface chemistry of the modified surfaces were investigated using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Our results show that the polymerization of aminosilanes and consequently the thickness of the aminosilane layer depend on the number of possible bonding sites of the aminosilane molecule. more
Imaging Polarization Charges Using Charge Gradient Microscopy
Jul. 24, 2014

Imaging Polarization Charges Using Charge Gradient Microscopy

Polarization charges in ferroelectric materials are screened by equal amounts of surface charges with opposite polarity under ambient conditions. Researchers from the Center for Nanoscale Materials, Argonne's Nanoscience & Technology and Materials Science divisions, and Tohoku University have shown that scraping, collecting, and quantifying surface screen charges reveals the underlying polarization domain structure at high speed, a technique dubbed charge gradient microscopy (CGM).
more
RSS Newsletter