You are here: Home

live cell imaging

Oct. 07, 2014

Lensless Microscopy of Cell Cultures - Video to Figure 1

Video to figure 1: The in vitro cell growth of a fibroblast L-929 culture was recorded every 10 minutes over 7 days in more than 1000pictures and visualized as a time-lapse video (fig. 1). more
Oct. 07, 2014

Lensless Microscopy of Cell Cultures - Video to Figure 5, right

Video to Figure 5, right: With the large cell number inside the field-of-view it is also more likely to observe rare events in the cell culture, such as tripolar cell division of mutated cells. The unusual division was easy to identify in the hologram and was reconstructed for detailed examination (fig. 5 right). Analyzing the degenerated cell in the timelapse video, it became clear, that the dividing cells could not separate during the cytokinesis and merge in one cell body again.
more
Oct. 07, 2014

Lensless Microscopy of Cell Cultures - Video to Figure 5, middle

Video to figure 5, middle: The segmented cells can be tracked over the whole experiment time to visualize cell migration, velocity, division rate and the cell lineage [7]. These characteristics are used in chemotaxis assays, for example to analyze cell migration and division in wound healing assays [3]. We visualized the tracks of several cells and noticed that, for instance mother cells, which cover a long distance between cell divisions hand down this attribute to their daughter cells.
more
Lensless Microscopy of Cell Cultures
Oct. 07, 2014

Lensless Microscopy of Cell Cultures

The lensless Cell-Microscope combines holographic imaging of cells with a thermoelectric cooling system and automated cell segmentation for live cell imaging inside the incubator. Using holography instead of optical focusing enables to build a cost-efficient, robust and compact microscope. The cooling of the CMOS camera defines the local temperature of the integrated cell culture chamber. Thousands of cells can be imaged, segmented, counted and tracked continuously within the large field of view.
more
Live-Cell Microscopy: A New Molecule for High-Resolution Imaging of the Cytoskeleton
May. 27, 2014

Live-Cell Microscopy: A New Molecule for High-Resolution Imaging of the Cytoskeleton

Like our own bodies, cells have their own skeletons called ‘cytoskeletons' and are made of proteins instead of bones. These network-like structures maintain the cell's shape, provide mechanical support, and are involved in critical processes of the cell's lifecycle. The cytoskeleton is an object of intense scientific and medical research, which often requires being able to observe it directly in cells. Ideally, this would involve highly-fluorescent molecules that can bind cytoskeletal proteins with high specificity without being toxic to the cell. Publishing in Nature Methods, EPFL scientists have exploited the properties of a new fluorescent molecule, also developed at EPFL, to generate two powerful probes for the imaging of the cytoskeleton with unprecedented resolution. These probes pave the way for the easier and higher quality imaging of cells, offering many scientific and medical advantages.
more
University of Albuquerque Develops High-speed Hyperspectral Microscope
May. 16, 2014

University of Albuquerque Develops High-speed Hyperspectral Microscope

The University of Albuquerque has designed a hyperspectral microscope (HSM) around an Andor iXon 860 high-speed EMCCD detection system to visualize membrane receptor dynamics at the molecular level in living cells.
The HSM provides acquisition rates of 27 fps over a 28 square micrometer field of view with each pixel collecting 128 spectral channels, allowing the determination of stoichiometry and dynamics of small oligomers unmeasurable by any other technique. more
Apr. 09, 2014

Video: cellVivo-The Modular and Flexible Incubation System

Extended live cell imaging requires stringent control of temperature, humidity, CO2 and O2 levels for sample integrity and focus position. In this short video, Olympus introduces its cellVivo incubation system for precise and ergonomic environmental control of advanced live cell imaging. more
Membrane Protein Localization by SpecON
Apr. 08, 2014

Membrane Protein Localization by SpecON

Spectrally coded optical nano-sectioning (SpecON) is a high-resolution microscopy technique that translates spatial (position) information of fluorescent markers into spectral (color) information providing a protein localization precision of up to 5-10 nm in live cells. The key element is a thin metal-dielectric coating on a microscope slide. The biocompatible design is such that the distance-dependent spectral "fingerprint" of fluorophores can be used to monitor their relative distance from the coating to study the positions and dynamics of key proteins in cell motility.
more
Structured Illumination Microscopy: Chemical Probe Profiles Live-cell Organelle Activity
Apr. 02, 2014

Structured Illumination Microscopy: Chemical Probe Profiles Live-cell Organelle Activity

A team of scientists from Pacific Northwest National Laboratory synthesized a chemical activity-based probe (ABP) that can provide new information about how living cells function. The new ABP is designed to enter a living cell without interacting with anything until it enters a specific organelle: the lysosome. This proof-of-concept ABP then labels only functionally active enzymes called cathepsins, which are cysteine proteases, in the lysosome. Using proteomics and super-resolution microscopy to view these labeled enzymes, the scientists now are able to see organellar activity. Their work, which demonstrates the ability to manipulate chemistry to better understand biology, has been published in Angewandte Chemie International Edition.
more
How to Set Up a 3D-SIM Microscope (User Manual)
Apr. 01, 2014

How to Set Up a 3D-SIM Microscope (User Manual)

In the past two decades, light microscopy has seen a tremendous improvement with super-resolution techniques. Many of the super-resolution microscopes (3D-SIM, STED, and PALM/STORM) are now available in a commercial solution, and are entering labs and facilities worldwide. This offers an important step forward in the field of research in biology, but when not used in optimal conditions, those powerful techniques can give rise to artefacts. Here we focus on parameters that can deeply influence the image quality for 3D-SIM and the next challenges for this technique. more
RSS Newsletter