You are here: Home

STED microscopy

New Fluorescence Probes for Live-Cell Imaging
Oct. 30, 2014

New Fluorescence Probes for Live-Cell Imaging

We review here a new generation of far-red fluorescent probes for live-cell imaging, which are based on a novel cell-permeable silicon rhodamine (SiR) dye. These probes combine a variety of desirable features, such as excellent selectivity, fluorogenicity, high brightness and low cytotoxicity, rendering them ideal probes for conventional and state-of-the-art super-resolution microscopy. Application of these new probes in combination with STED microscopy revealed for the first time the nine-fold symmetry of the centrosome and confirmed the spatial organization of actin in the axon of cultured neurons in living cells.
more
Kavli Prize in Nanoscience 2014 for Super-Resolution Microscopy
Jun. 03, 2014

Kavli Prize in Nanoscience 2014 for Super-Resolution Microscopy

The Kavli Prize in Nanoscience is shared between Thomas W. Ebbesen, Université Louis Pasteur, Université de Strasbourg, France, Stefan W. Hell, Max Planck Institute for Biophysical Chemistry, Germany, and Sir John B. Pendry, Imperial College London, UK. They receive the prize "for transformative contributions to the field of nano-optics that have broken long-held beliefs about the limitations of the resolution limits of optical microscopy and imaging".
more
Neuroscience: First 3D Model of a Synapse
Jun. 02, 2014

Neuroscience: First 3D Model of a Synapse

Synapses are the contacts between nerve cells that allow the flow of information that makes our brains work. However, the molecular architecture of these highly complex structures has been unknown until now. A research team from Göttingen, led by Prof. Silvio O. Rizzoli from the DFG Research Center and Cluster of Excel-lence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) of the University Medical Center Göttingen, managed to determine the copy numbers and positions of all important building blocks of a synapse for the first time.
more
May. 15, 2012

Explaining STED Microscopy by Boris Zarda from Leica Microsystems

Dr. Boris Zarda from Leica Microsystems shows the differences of confocal microscopy and STED microscopy on the basis of different examples. more
STED Microscopy: Imaging the Living Mouse Brain
Feb. 09, 2012

STED Microscopy: Imaging the Living Mouse Brain

Using the STED microscopy developed by Stefan Hell, researchers at the Max Planck Institute for Biophysical Chemistry in Göttingen, Germany have, for the first time, managed to record detailed live images inside the brain of a living mouse. Captured in the previously impossible resolution of less than 70 nanometers, these images have made the minute structures visible which allow nerve cells to communicate with each other. more
Time-Gated STED Microscopy
Dec. 27, 2011

Time-Gated STED Microscopy

Stimulated emission depletion microscopy has been used to overcome the diffraction limit of confocal fluorescence microscopy. By exploiting information present in the arrival time of fluorescence photons through time-gating, the resolution of STED microscopes can be improved significantly. The resolution improvement of this technique - termed "T-STED" - becomes most evident in CW-STED where the STED beam is of long duration compared to the lifetime of the fluorophore.

Introduction
more
Stefan Hell has Received The Körber Prize 2011
Sep. 02, 2011

Stefan Hell has Received The Körber Prize 2011

The Körber European Science Prize 2011 has been awarded to Prof. Dr. Dr. h. c. Stefan Hell of the Max Planck Institute for Biophysical Chemistry in Göttingen. more
Stefan Hell Receives the Körber Prize 2011
Jul. 19, 2011

Stefan Hell Receives the Körber Prize 2011

Prof. Dr. Dr. h. c. Stefan Hell of the Max Planck Institute for Biophysical Chemistry in Göttingen, Germany is to receive the 2011 Körber European Science Prize endowed with 750,000 € for his pioneering discoveries in the field of optics. Every year, the Körber Prize is awarded to an outstanding scientist working in Europe on particularly promising projects. The prizewinner is selected by an international trustee committee chaired by Prof. Dr. Peter Gruss, President of the Max Planck Society.
more
Single-Molecule FRET & Super-Resolution
Jun. 20, 2011

Single-Molecule FRET & Super-Resolution

In order for nanotechnology, photonics and single-molecule spectroscopy to meet, structures with defined molecular compositions with dimensions in the 1-100 nm range are required. With the aid of DNA, nanostructures were constructed that guide light in switchable directions using multistep FRET from an input dye to an output dye. The direction of FRET is controlled by a jumper dye. more
Confocal Nanoscopy Goes Multicolor
Nov. 16, 2010

Confocal Nanoscopy Goes Multicolor

Scientists long to understand the architecture of life. They want to learn how biological structures are arranged in respect to one another. Do they co-localize within or are they excluded from the same superstructure? Does localization follow a special pattern and how does the overall arrangement reflect the biological function? Multicolor superresolution imaging allows these fundamental questions to be addressed by far-field fluorescence microscopy in unprecedented detail. more
RSS Newsletter