You are here: Home

X-Ray Diffraction

Jul. 07, 2014

X-Ray Diffraction Reveals 3D Structure of RNAi Microsponges

Macromolecular complexes composed of self-assembling proteins and nucleic acids hold promise for a wide range of applications, including drug delivery, sensing and molecular electronics. Scientists have developed a broad array of x-ray scattering techniques for characterizing the shape and surface morphology of these complexes, but probing their internal structure remains a challenge. Changyong Song and colleagues from the RIKEN SPring-8 Center and RIKEN Advanced Institute for Computational Science have now devised a structural analysis scheme based on complementary advanced x-ray techniques that has allowed them to peer inside an RNA macromolecular complex for the first time. Results were published in Nature Communications.
more
Gerhard Materlik Receives 2014 Glazebrook Medal
Jul. 04, 2014

Gerhard Materlik Receives 2014 Glazebrook Medal

Professor Gerhard Materlik, University College London and Diamond Light Source receives the Glazebrook Medal 2014 for outstanding leadership in establishing a world-leading laboratory at the Diamond Light Source and for his innovations in X-ray diffraction physics.
more
XFEL Technology: Superbright and Fast X-Rays Image Single Layer of Proteins
Apr. 04, 2014

XFEL Technology: Superbright and Fast X-Rays Image Single Layer of Proteins

In biology, a protein's shape is key to understanding how it causes disease or toxicity. Researchers who use X-rays to take snapshots of proteins need a billion copies of the same protein stacked and packed into a neat crystal. Now, scientists using exceptionally bright and fast X-rays can take a picture that rivals conventional methods with a sheet of proteins just one protein molecule thick.
more
X-Ray Technology: Observing a Catalyst Surface at Work with Atomic Resolution
Feb. 09, 2014

X-Ray Technology: Observing a Catalyst Surface at Work with Atomic Resolution

By using a novel X-ray technique, researchers have observed a catalyst surface at work in real time and were able to resolve its atomic structure in detail. The new technique, pioneered at DESY's X-ray light source PETRA III, may pave the way for the design of better catalysts and other materials on the atomic level. It greatly speeds up the determination of atomic surface structures and enables live recordings of surface reactions like catalysis, corrosion and growth processes with a time resolution of less than a second.
more
Free-electron Lasers Reveal Detailed Architecture of Proteins
Jun. 04, 2012

Free-electron Lasers Reveal Detailed Architecture of Proteins

In the centennial year of Max von Laue's discovery that X-ray diffraction can be used to unravel the atomic architecture of molecules, a new approach to the determination of high-resolution structures has been demonstrated. An international team of researchers has analyzed tiny protein crystals using short pulses of X-ray light from the hard X-ray free-electron laser, the US Department of Energy's 300 million dollar Linac Coherent Light Source at Stanford. more
Dec. 08, 2011

Temperature Gradient Influences the Crystallization Processes in Opto-Electronic Thin Films

The Laboratory of Polymer Chemistry at the Université Libre de Bruxelles is focused on research into "small molecules", namely, liquid crystalline semiconductors for organic electronics application.  Various organic semiconductors have been receiving a great deal of attention in "plastic" electronic devices such as organic photovoltaic cells, light-emitting diodes (OLED) and field effect transistors (OFET). more
Preparation of TEM Samples
Oct. 26, 2011

Preparation of TEM Samples

A special method of Transmission Electron Microscopy (TEM) samples preparation is described in this article. Rapidly solidified alloy have very fine structure formed by matrix and intermetallic phases. Common TEM sample of bulk material allows observe the distribution of intermetallic particles but not their detail characteristic because of their small size. To describe the intermetallic phases is necessary to extract them from matrix. It is possible to do that by selective matrix dissolution in the solution of tartaric acid and iodine in methanol. more
VM12 Strengthing by Precipitates - TEM Study of Precipitates in the Martensitic VM12 Steel
Sep. 19, 2011

VM12 Strengthing by Precipitates - TEM Study of Precipitates in the Martensitic VM12 Steel

Martensitic VM12 steel was recently developed for advanced coal-fired power stations. Its creep resistance is dependent on a stability of microstructure. Destabilization of microstructure is caused by recovery and softening processes of a tempered martensite and depends on changes of a dislocation substructure and morphology of secondary particles during creep. Quantitative TEM analyses of VM12 steel were ­undertaken to determine the microstructure parameters after creep at 625°C up to 30.000h.

Experimental
more
Nov. 02, 2010

X-ray Diffraction Microscopy

H. Jiang and co-workers bridged the visualization gap between 3D optical microscopy and 3D electron microscopy by demonstrating the quantitative 3D imaging of a whole unstained cell by X-ray diffraction microscopy at a resolution of 50-60 nm. Subcellular structures and organelles could be identified and the resolution can be even further improved by cryotechnology. more
Introduction to X-ray Diffraction
Nov. 05, 2009

Introduction to X-ray Diffraction

X-Ray Diffraction (XRD) is a high-tech, non-destructive technique for analyzing a wide range of materials. Throughout industry and research institutions, XRD has become an indispensable method for materials investigation, characterization and quality control. Example areas of application include over others, qualitative and quantitative phase analysis, crystallography, structure and relaxation determination, micro-diffraction, nano-materials, lab- and process automation, and high-throughput polymorph screening. more
RSS Newsletter