You are here: Home

X-Ray imaging

Filming Chemistry With a High Speed X-Ray Camera
Dec. 12, 2014

Filming Chemistry With a High Speed X-Ray Camera

Chemistry happens all around us. A chemical reaction is a rearrangement of atoms in and between molecules, the breaking of old and the formation of new bonds. The glue that binds atoms in molecules and creates the bonds between them is made out of valence electrons. more
X-Ray Laser Imaging: Visualizing Bacterial Cell Organelles
Nov. 20, 2014

X-Ray Laser Imaging: Visualizing Bacterial Cell Organelles

An international team of scientists led by Uppsala University has developed a high-throughput method of imaging biological particles using an X-ray laser. Images obtained with this method show projections of the carboxysome particle, a delicate and tiny cell organelle of photosynthetic bacteria. Results have been published in in Nature Photonics.
more
Developing a New Type of X-Ray Lens
Nov. 13, 2014

Developing a New Type of X-Ray Lens

Researchers have taken an important step towards developing a new X-ray lens made of diamond. A team of scientists from the Technische Universität (TU) Dresden and Technische Universität Chemnitz as well as from DESY have successfully tested a new lens design. The group working with DESY Leading Scientist, Professor Christian Schroer, presents the results in the scientific journal Applied Physics Letters.
more
X-Ray Imaging Paves Way for Novel Solar Cell Production
Sep. 25, 2014

X-Ray Imaging Paves Way for Novel Solar Cell Production

The sharp X-ray vision of DESY´s research light source PETRA III paves the way for a new technique to produce cheap, flexible and versatile double solar cells. The method developed by scientists from the Technical University of Denmark (DTU) in Roskilde can reliably produce efficient tandem plastic solar cells of many metres in length, as a team around senior researcher Jens W. Andreasen reports in the journal Advanced Energy Materials.
more
X-Ray Stroboscope Offers New Insights Into Biomolecular Dynamics
Sep. 22, 2014

X-Ray Stroboscope Offers New Insights Into Biomolecular Dynamics

Reaearchers from Göttingen in collaboration with colleagues from Augsburg have 'filmed' the movement of lipid molecules using an X-ray stroboscope at DESY. In the scientific journal Physical Review Letters, researchers lead by Professor Tim Salditt of the University of Göttingen report that their study offers new insights into the dynamics of biomolecules, which compose materials such as cell membranes. The cell membranes consist of a double layer of lipid molecules; the properties of the membranes are of great interest because they control which substances enter and exit a biological cell and also determine which materials are exchanged between different cell regions.
more
Jul. 07, 2014

X-Ray Diffraction Reveals 3D Structure of RNAi Microsponges

Macromolecular complexes composed of self-assembling proteins and nucleic acids hold promise for a wide range of applications, including drug delivery, sensing and molecular electronics. Scientists have developed a broad array of x-ray scattering techniques for characterizing the shape and surface morphology of these complexes, but probing their internal structure remains a challenge. Changyong Song and colleagues from the RIKEN SPring-8 Center and RIKEN Advanced Institute for Computational Science have now devised a structural analysis scheme based on complementary advanced x-ray techniques that has allowed them to peer inside an RNA macromolecular complex for the first time. Results were published in Nature Communications.
more
X-Ray Microscopy: Improving Lenses with Spatial Resolution Below 10 nm
Jun. 23, 2014

X-Ray Microscopy: Improving Lenses with Spatial Resolution Below 10 nm

Physicists at HZB have developed a process to generate improved lenses for X-ray microscopy that provide both better resolution and higher throughput. To accomplish this, they fabricate three-dimensional X-ray optics for volume diffraction that consist of on-chip stacked Fresnel zone plates. These three-dimensional nanostructures focus the incident X-rays much more efficiently and enable improved spatial resolution below ten nanometres. Results have been published in the journal Nano Research.
more
X-Ray Imaging: Using Multilayer Laue Lenses for Nanoanalytics
Jun. 18, 2014

X-Ray Imaging: Using Multilayer Laue Lenses for Nanoanalytics

Progress in the field of nanotechnology can only be achieved, if analytical methods for the characterization of nanostructures continuously improve. Due to the structure's small size visible light cannot be utilized for nanoanalytical techniques. In point of fact, microscopic methods with electron waves or X-rays must be applied here, as the wavelengths, they work with, are small enough. Multilayer Laue lenses (MLL) offer a most promising approach to developing highest resolution X-ray optics.
more
High-Resolution Imaging: Visualizing the Malaria Pathogen’s Cellular Skeleton
Apr. 22, 2014

High-Resolution Imaging: Visualizing the Malaria Pathogen’s Cellular Skeleton

The tropical disease malaria is caused by the Plasmodium parasite. For its survival and propagation, Plasmodium requires a protein called actin. Scientists of the Helmholtz Centre for Infection Research (HZI) in Germany used high-resolution structural biology methods to investigate the different versions of this protein in the parasite in high detail. Their results, published in the scientific journal PLOS Pathogens, may in the future contribute to the development of tailor-made drugs against malaria-a disease that causes more than half a million deaths per year.
more
XFEL Technology: Superbright and Fast X-Rays Image Single Layer of Proteins
Apr. 04, 2014

XFEL Technology: Superbright and Fast X-Rays Image Single Layer of Proteins

In biology, a protein's shape is key to understanding how it causes disease or toxicity. Researchers who use X-rays to take snapshots of proteins need a billion copies of the same protein stacked and packed into a neat crystal. Now, scientists using exceptionally bright and fast X-rays can take a picture that rivals conventional methods with a sheet of proteins just one protein molecule thick.
more
RSS Newsletter