New Book: Infrared and Raman Spectroscopic Imaging

This second edition of the must-have reference is updated and revised with approximately 30% new content to reflect the numerous instrumental developments and improvements, as well as the significant expansion of this rapidly developing field. With many valuable practical tips.

Salzer, Reiner / Siesler, Heinz W. (eds.)

Infrared and Raman Spectroscopic Imaging
2., completely revised and updated Edition - September 2014
149.- Euro
2014. 656 Pages, Hardcover
- Handbook/Reference Book -
ISBN 978-3-527-33652-4 - Wiley-VCH, Weinheim

More information:
http://www.wiley-vch.de/

From the contents
Preface

PART I: Basic Methodology

INFRARED AND RAMAN INSTRUMENTATION FOR MAPPING AND IMAGING
Introduction to Mapping and Imaging
Mid-Infrared Microspectroscopy and Mapping
Raman Microspectroscopy and Mapping
Near-Infrared Hyperspectral Imaging
Raman Hyperspectral Imaging
Mid-Infrared Hyperspectral Imaging
Mapping with Pulsed Terahertz Radiation
Summary

CHEMOMETRIC TOOLS FOR IMAGE ANALYSIS
Introduction
Hyperspectral Images: The Measurement
Image Preprocessing
Exploratory Image Analysis
Quantitative Image Information: Multivariate Image Regression (MIR)
Image Segmentation
Image Resolution
Future Trends

PART II: Biomedical Applications

VIBRATIONAL SPECTROSCOPIC IMAGING OF SOFT TISSUE
Introduction
Preparation of Soft Tissue for Vibrational Spectroscopic Imaging
Applications to Soft Tissue
Conclusions

VIBRATIONAL SPECTROSCOPIC ANALYSIS OF HARD TISSUES
Introduction
Importance of Tissue Age versus Specimen Age
FT-IR Spectroscopy
Raman Spectroscopy
Clinical Applications of Raman Spectroscopy

MEDICAL APPLICATIONS OF INFRARED SPECTRAL IMAGING OF INDIVIDUAL CELLS
Introduction
Methods
Results and Discussion
Future Potential of SCP/Conclusions

PART III: Agriculture, Plants, and Food

INFRARED AND RAMAN SPECTROSCOPIC MAPPING AND IMAGING OF PLANT MATERIALS
Introduction, Background, and Perspective
Application of Mapping and Imaging to Horticultural Crops
Application of Mapping and Imaging to Agricultural Crops
Mapping and Imaging of Wild Plants and Trees
Application of Mapping and Imaging to Algae
Interaction Between Plant Tissue and Plant Pathogens

NIR HYPERSPECTRAL IMAGING FOR FOOD AND AGRICULTURAL PRODUCTS
Introduction
HSI as a "Super" NIR Analyzer
NIR HS Imager as a "Super" Vision System
Conclusion

PART IV: Polymers and Pharmaceuticals

FT-IR AND NIR SPECTROSCOPIC IMAGING: PRINCIPLES, PRACTICAL ASPECTS, AND APPLICATIONS IN MATERIAL AND PHARMACEUTICAL SCIENCE
Introduction
Instrumentation for NIR and FT-IR Imaging
Applications of FT-IR and FT-NIR Imaging for Polymer Characterization
NIR Imaging Spectroscopy for Quality Control of Pharmaceutical Drug Formulations
FT-IR Spectroscopic Imaging of Inorganic Materials

FT-IR IMAGING IN ATR AND TRANSMISSION MODES: PRACTICAL CONSIDERATIONS AND EMERGING APPLICATIONS
FT-IR Imaging: Introduction
FT-IR Imaging: Technical Considerations
Practical Applications
Conclusion and Outlook

TERAHERTZ IMAGING OF DRUG PRODUCTS
Introduction
Low Wavenumber Region in the Infrared Spectrum
THz-TDS Technology and Applications
THz Imaging in the Pharmaceutical Industry
Going Forward
Competition versus Cost: A Challenge for the Future
Conclusion

PART V: Imaging Beyond the Diffraction Limit

SPECTROSCOPIC IMAGING OF BIOLOGICAL SAMPLES USING NEAR-FIELD METHODS
Tip-Enhanced Raman Scattering (TERS)
Detection of Biomolecules
Biopolymers
Membranes, Viruses, and Bacteria
Conclusion
INFRARED MAPPING BELOW THE DIFFRACTION LIMIT
Introduction and Description of Early Work
Near-Field Microscopy by Elastic Scattering from a Tip

PART VI: Developments in Methodology

SUBSURFACE RAMAN SPECTROSCOPY IN TURBID MEDIA
Introduction
Techniques for Deep Noninvasive Raman Spectroscopy
Examples of Application Areas
Conclusions

NONLINEAR VIBRATIONAL SPECTROSCOPIC MICROSCOPY OF CELLS AND TISSUE
Introduction
Principles of Nonlinear Optical Imaging
Instrumentation for Multimodal Nonlinear Microscopy
Applications

WIDEFIELD FT-IR 2D AND 3D IMAGING AT THE MICROSCALE USING SYNCHROTRON RADIATION
Introduction
Optical Evaluation
Mathematical Evaluation of Hyperspectral Cubes
Widefield versus Raster Scanning Geometries
Examples
Conclusions

Index